Package: bayesnec 2.1.3.0
bayesnec: A Bayesian No-Effect- Concentration (NEC) Algorithm
Implementation of No-Effect-Concentration estimation that uses 'brms' (see Burkner (2017)<doi:10.18637/jss.v080.i01>; Burkner (2018)<doi:10.32614/RJ-2018-017>; Carpenter 'et al.' (2017)<doi:10.18637/jss.v076.i01> to fit concentration(dose)-response data using Bayesian methods for the purpose of estimating 'ECx' values, but more particularly 'NEC' (see Fox (2010)<doi:10.1016/j.ecoenv.2009.09.012>), 'NSEC' (see Fisher and Fox (2023)<doi:10.1002/etc.5610>), and 'N(S)EC (see Fisher et al. 2023<doi:10.1002/ieam.4809>). A full description of this package can be found in Fisher 'et al.' (2024)<doi:10.18637/jss.v110.i05>. This package expands and supersedes an original version implemented in 'R2jags' (see Su and Yajima (2020)<https://CRAN.R-project.org/package=R2jags>; Fisher et al. (2020)<doi:10.5281/ZENODO.3966864>).
Authors:
bayesnec_2.1.3.0.tar.gz
bayesnec_2.1.3.0.zip(r-4.5)bayesnec_2.1.3.0.zip(r-4.4)bayesnec_2.1.3.0.zip(r-4.3)
bayesnec_2.1.3.0.tgz(r-4.4-any)bayesnec_2.1.3.0.tgz(r-4.3-any)
bayesnec_2.1.3.0.tar.gz(r-4.5-noble)bayesnec_2.1.3.0.tar.gz(r-4.4-noble)
bayesnec_2.1.3.0.tgz(r-4.4-emscripten)bayesnec_2.1.3.0.tgz(r-4.3-emscripten)
bayesnec.pdf |bayesnec.html✨
bayesnec/json (API)
NEWS
# Install 'bayesnec' in R: |
install.packages('bayesnec', repos = c('https://open-aims.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/open-aims/bayesnec/issues
- herbicide - Herbicide phytotoxicity data
- manec_example - Example bayesmanecfit object
- nec_data - Example data of non-linear decay
bayesian-inferenceconcentration-responseecotoxicologyno-effect-concentrationnon-linear-decaythreshold-derivationtoxicology
Last updated 3 months agofrom:5a942a5573. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 18 2024 |
R-4.5-win | OK | Oct 18 2024 |
R-4.5-linux | OK | Oct 18 2024 |
R-4.4-win | OK | Oct 18 2024 |
R-4.4-mac | OK | Oct 18 2024 |
R-4.3-win | OK | Oct 18 2024 |
R-4.3-mac | OK | Oct 18 2024 |
Exports:amendaverage_estimatesbayesnecformulabnecbnec_newdatabnfcheck_chainscheck_formulacheck_priorscompare_estimatescompare_fittedcompare_posteriordispersionecxexpand_manecexpand_necggbnec_datais_manecsummarymake_brmsformulamodelsnecnsecpull_brmsfitpull_outpull_priorsample_priorsshow_paramsstep
Dependencies:abindbackportsbayesplotBHbridgesamplingbrmsBrobdingnagcallrcheckmatechkclicodacodetoolscolorspacecpp11descdigestdistributionaldplyrevaluatefansifarverformula.toolsfuturefuture.applygenericsggplot2ggridgesglobalsgluegridExtragtableinlineisobandlabelinglatticelifecyclelistenvloomagrittrMASSMatrixmatrixStatsmgcvmunsellmvtnormnleqslvnlmenumDerivoperator.toolsparallellypillarpkgbuildpkgconfigplyrposteriorprocessxpspurrrQuickJSRR6RColorBrewerRcppRcppEigenRcppParallelreshape2rlangrstanrstantoolsscalesStanHeadersstringistringrtensorAtibbletidyrtidyselectutf8vctrsviridisLitewithr
Comparing posterior predictions
Rendered fromexample4.Rmd
usingknitr::rmarkdown
on Oct 18 2024.Last update: 2024-01-02
Started: 2020-11-18
Model details
Rendered fromexample2b.Rmd
usingknitr::rmarkdown
on Oct 18 2024.Last update: 2024-01-02
Started: 2020-11-20
Multi model usage
Rendered fromexample2.Rmd
usingknitr::rmarkdown
on Oct 18 2024.Last update: 2024-01-02
Started: 2020-11-03
Priors
Rendered fromexample3.Rmd
usingknitr::rmarkdown
on Oct 18 2024.Last update: 2024-01-02
Started: 2020-11-03
Running bayesnec
Rendered fromexample5.Rmd
usingknitr::rmarkdown
on Oct 18 2024.Last update: 2024-01-02
Started: 2023-05-19
Single model usage
Rendered fromexample1.Rmd
usingknitr::rmarkdown
on Oct 18 2024.Last update: 2024-01-02
Started: 2020-11-03